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Abstract
We study measure perturbations of the Laplacian in L2(R2) supported by an
infinite curve � in the plane which is asymptotically straight in a suitable sense.
We show that if � is not a straight line, such a ‘leaky quantum wire’ has at least
one bound state below the threshold of the essential spectrum.

PACS numbers: 0365, 7320D, 1238B

1. Introduction

The aim of this paper is to elucidate some geometrically induced spectral properties for the
Laplacian in L2(R2) perturbed by a negative multiple of the Dirac measure of an infinite curve
� in the plane.

This problem has at least two motivations. On the physics side we note that the quantum
mechanics of electrons confined to narrow tube-like regions has attracted considerable interest,
because such systems represent a natural model for semiconductor ‘quantum wires’. In
some examples the region in question is a strip or tube with hard walls—see, e.g., [DE]
and references therein—while other treatments assume even stronger localization to a curve or
a graph—a rich bibliography to such models can be found in [KS]. Various interesting spectral
effects were found in such a setting related to the geometry and topology of the underlying
restricted configuration space. One of them, of relevance to this paper, is the existence of
curvature-induced bound states in Dirichlet tubes observed for the first time more than a
decade ago [EŠ].

On the other hand, the said models are certainly idealized as far as the nature of
the confinement is concerned. In actual quantum wires, the electrons are trapped due
to interfaces between two different semiconductor materials which represents a finite
potential jump. Hence if two parts of a quantum wire are close to each other, quantum
tunnelling is possible between them. The idealization thus makes an important difference,
because without it one expects the spectral properties to be determined by the global
geometry of the wire. At the same time, it is not a priori clear whether effects
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like the curvature-induced binding mentioned above will persist if tunnelling is allowed,
because the techniques used to demonstrate them make essential use of the strict spatial
localization.

Here we address the last question in the weak-coupling setting when the confinement
is realized transversally by an attractive δ interaction [AGHH]. A related problem with
an interaction supported by a finite-length curve was considered before in [BT], for more
general lower-dimension perturbations of a free Schrödinger operator in both the ‘potential’
and ‘kinetic’ part see, e.g., [AFHK, Kar, KK, Pa1, Pa2].

In our case the interaction is again supported by a curve � which is, however, infinitely
long. We will show that if � is not straight, but it is straight asymptotically in the sense which
we make precise below, the corresponding Hamiltonian has a nontrivial discrete spectrum. This
is our main result expressed by theorem 5.2. Moreover, we will show in theorem 4.1 that such
Hamiltonians can be approximated in the norm-resolvent sense by a family of Schrödinger
operators with regular potentials of the form of a bounded and infinitely stretched ‘ditch’.
Consequently, the approximating operators also exhibit bound states provided the ditch is
squeezed enough.

On the other hand, the technique we employ to demonstrate these results may represent
some mathematical interest. It is basically the Birman–Schwinger (BS) formalism in the form
extended to measure-perturbed Laplacians in [BEKŠ]. In the present case, however, we deal
with the situation where the operator appearing in the BS kernel is not compact. Our treatment
shows that one can nevertheless get useful information, if the operator in question decomposes
into a sum of two parts, of which one is an operator with a known spectrum and the other is
its compact perturbation.

2. Generalized Schrödinger operators

The Hamiltonians we are going to study are generalized Schrödinger operators with a singular
interaction supported by a zero-measure set. Let us first recall several facts about such
operators. They are borrowed from the paper [BEKŠ] and we specify them to our present
purpose by assuming the configuration space dimension d = 2 and the coupling ‘strength’
constant on the interaction support.

Consider a positive radon measure m on R
2 and a number α > 0 such that

(1 + α)

∫
R2

|ψ(x)|2 dm(x) � a

∫
R2

|∇ψ(x)|2 dx + b

∫
R2

|ψ(x)|2 dx (2.1)

holds for all ψ ∈ S(R2) and some a < 1 and b. The map Im defined by Imψ = ψ on the
Schwartz space S(R2) uniquely extends by density to

Im : W1,2(R
2) → L2(m) := L2(R2,m) (2.2)

for the sake of brevity we employ the same symbol for a continuous function and the
corresponding equivalence classes in both L2(R2) and L2(m). The inequality (2.1) extends to
W1,2(R

2) with ψ replaced by Imψ in the lhs
The operators we are interested in are introduced by means of the following quadratic

form:

E−αm(ψ, φ) :=
∫

R2
∇ψ(x)∇φ(x) dx − α

∫
R2
(Imψ̄)(x)(Imφ)(x) dm(x) (2.3)

with the domainW1,2(R
2). It is straightforward to see [BEKŠ] that under the condition (2.1) this

form is closed and below bounded, with C∞
0 (R2) as a core, and consequently, it is associated
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with a unique self-adjoint operator denoted as H−αm. The condition (2.1) is satisfied, in
particular, if the measure m belongs to the generalized Kato class

lim
ε→0

sup
x∈R2

∫
B(x,ε)

| ln |x − y|| dm(y) = 0 (2.4)

where B(x, ε) is the ball of radius ε and centre x. Moreover, any positive number can be in
this case chosen as a.

For operators of the described type the generalized BS principle is valid. If k2 belongs to
the resolvent set of H−αm we put Rk

−αm := (H−αm − k2)−1. The free resolvent Rk
0 is defined

for Im k > 0 as an integral operator with the kernel

Gk(x − y) = i

4
H

(1)
0 (k|x−y|). (2.5)

Next we need embedding operators associated with Rk
0 . Let µ, ν be arbitrary positive Radon

measures on R
2 with µ(x) = ν(x) = 0 for any x ∈ R

2. By Rk
ν,µ we denote the integral

operator from L2(µ) := L2(R2, µ) to L2(ν) with the kernel Gk, i.e.

Rk
ν,µφ = Gk ∗ φµ

holds ν—a.e. for all φ ∈ D(Rk
ν,µ) ⊂ L2(µ). In our case the two measures will be the m

introduced above and the Lebesgue measure dx on R
2 in different combinations. With this

notation one can express the generalized BS principle as follows [BEKŠ]:

Proposition 2.1.

(i) There is a κ0 > 0 such that the operator I − αRiκ
m,m on L2(m) has a bounded inverse for

any κ � κ0.
(ii) Let Im k > 0. Suppose that I − αRk

m,m is invertible and the operator

Rk := Rk
0 + αRk

dx,m[I − αRk
m,m]−1Rk

m,dx

from L2(R2) to L2(R2) is everywhere defined. Then k2 belongs to ρ(H−αm) and
(H−αm − k2)−1 = Rk .

(iii) dim ker(H−αm − k2) = dim ker(I − αRk
m,m) for any k with Im k > 0.

3. Formulation of the problem

After this preliminary we will specify a class of operators which we discuss in the following,
where the measuremwill be the Dirac measure supported by a curve. Suppose that γ̃ : R → R

2

is a continuous, piecewiseC1 smooth function; its graph is a curve denoted as�. We can define
its arc length,

s[ξ1, ξ2] :=
∫ ξ2

ξ1

√
˙̃γ

2
1 + ˙̃γ

2
2 dξ

which is the natural parametrization of �: for a fixed ξ1, s[ξ1, ·] is strictly increasing and
piecewise smooth, so there is a unique inverse function ξ : R → R with the same properties,
and we can define γ := γ̃ ◦ ξ . In what follows we always characterize the curve � by the
function γ . Since γ maps continuously into R

2, we have

|γ (s) − γ (s ′)| � |s − s ′| (3.1)

for any s, s ′ ∈ R. In addition, we shall assume:
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(a1) there is c ∈ (0, 1) such that |γ (s) − γ (s ′)| � c|s − s ′|. In particular, � has no cusps and
self-intersections, and its possible asymptotes are not parallel to each other.

(a2) � is asymptotically straight in the following sense: there are positive d, µ, and ω ∈ (0, 1)
such that the inequality

1 − |γ (s) − γ (s ′)|
|s − s ′| � d[1 + |s + s ′|2µ]−1/2 (3.2)

holds true in the sector Sω := {(s, s ′) : ω < s
s ′ < ω−1}.

The operator we are interested in is a generalized Schrödinger operator with the interaction
localized at the curve which can be formally written as

Hα,γ = −( − αδ(x − �). (3.3)

This definition can be given meaning if we identify Hα,γ with H−αm of the preceding section,
where m is the Dirac measure on �, or more exactly,

m : m(M) = *1(M ∩ �) (3.4)

for any Borel M ⊂ R
2, where *1 is the one-dimensional Hausdorff measure; for a piecewise

smooth curve it is given, of course, by the arc length.
One has to make sure, of course, that the measure (3.4) satisfies the condition (2.1).

This follows from theorem 4.1 of [BEKŠ] if γ is continuous, piecewise C1, and satisfies
the assumption (a1). Consequently, we may employ proposition 2.1 for investigation of the
resolvent of Hα,γ .

Let us finally remark that since � is a piecewise smooth curve without cusps and self-
intersections, it is also possible to consider the operator Ḣα,γ acting as

(Ḣα,γ ψ)(x) = −((ψ)(x) x ∈ R
2 \ �

for any ψ of the domain consisting of functions which belong to W2,2(R
2 \�), are continuous

at � with the normal derivatives having there a jump,

∂ψ

∂n+
(x) − ∂ψ

∂n−
(x) = −αψ(x) x ∈ �.

It is straightforward to check that Ḣα,γ is e.s.a. and by the Green formula it reproduces the
form (2.3) on its core, so its closure may be identified with Hα,γ defined above—see [BEKŠ].

4. Leaky wires as weakly coupled waveguides

Before proceeding further we want to show that the operators (3.3) can be regarded as the weak-
coupling approximation to a class of Schrödinger operators. Let � be again an infinite planar
curve described by the function γ . Now we shall make a stronger assumption, namely that γ is
C2. Then we can define the (signed) curvature k(s) := (γ ′

1γ
′′
2 −γ ′

2γ
′′
1 )(s); we shall assume that

it is bounded, |k(s)| < c+ for some c+ > 0 and all s ∈ R. We employ the conventional symbol
in the belief that the context will never allow one to mix the curvature with the momentum
variable. On the other hand, we will not impose the requirements (a1), (a2). It is sufficient to
assume that � has neither self-intersections nor ‘near-intersections’, i.e., that there is a c− > 0
such that |γ (s)−γ (s ′)| � c− for any s, s ′ with |s − s ′| � c−.

Under these assumptions we are able to define in the vicinity of � a locally orthogonal
system of coordinates: a point is characterized by the pair (s, u), whereu is the (signed) distance
from � measured along the appropriate normal n(s), and s is the arc-length coordinate of the
point of � where the normal is taken. It is easy to see that the curvilinear coordinates are well
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defined and unique in the strip neighbourhood of the curve, .ε := {x(s, u) : (s, u) ∈ .0
ε },

where

x(s, u) := γ (s) + n(s)u (4.1)

and .0
ε := {(s, u) : s ∈ R, |u| < ε} is the straightened strip, as long as the condition 2ε < c−

is valid. If there is no danger of misunderstanding, we shall simply write x instead of x(s, u).
With these prerequisites we are able to construct the mentioned family of Schrödinger

operators. Given W ∈ L∞((−1, 1)), we define for all ε < 1
2 c− the transversally scaled

potential,

Vε(x) :=



0 x �∈ .ε

−1

ε
W

(u
ε

)
x ∈ .ε

(4.2)

and put

Hε(W, γ ) := −( + Vε. (4.3)

The operators Hε(W, γ ) are obviously self-adjoint on D(−() = W2,2(R
2) and the

corresponding resolvent can be expressed in the BS way,

(Hε(W, γ ) − k2)−1 = (−( − k2)−1 − (−( − k2)−1V 1/2
ε [I + |Vε |1/2(−( − k2)−1V 1/2

ε ]−1

×|Vε |1/2(−( − k2)−1 (4.4)

for any k2 ∈ ρ(Hε(W, γ )) ∩ ρ(−(), where we have used the usual convention, V 1/2
ε :=

|Vε |1/2sgn (Vε).
Then we have the following approximation result; the proof of which is given in the

appendix:

Theorem 4.1. With the stated assumptions, Hε(W,�) → Hα,γ as ε → 0, where α =∫ 1
−1 W(t) dt , in the norm-resolvent sense.

5. Curvature-induced discrete spectrum

Let us now return to the spectral analysis of the operator Hα,γ . If � is a straight line
corresponding to γ0(s) = as + b for some a, b ∈ R

2 with |a| = 1, we can separate variables
and show that

σ(Hα,γ0) = [− 1
4α

2,∞) (5.1)

is purely absolutely continuous. The aim of the present section is to show that for a non-straight
� of the class specified in section 3, σ(Hα,γ ) has a nonempty discrete component. Let us start
with the essential spectrum.

Proposition 5.1. Let α > 0 and suppose that γ : R → R
2 is a continuous, piecewise C1

function satisfying (a1), (a2); then σess(Hα,γ ) = [− 1
4α

2,∞).

Proof. We shall show shortly that σ(Rκ
α,γ0

) = [0, α/2κ] holds for Rκ
α,γ := αRiκ

m,m referring to
γ = γ0. In view of lemma 5.4 below the same interval is contained in the spectrum of Rκ

α,γ ,
and thus by proposition 2.1 no point of the interval (− 1

4α
2, 0) belongs to the resolvent set of

the operator Hα,γ . Consequently, σess(Hα,γ ) ⊃ [− 1
4α

2, 0]. By the same compact-perturbation
argument we find that with the exception of a discrete set corresponding to eigenvalues of a
finite multiplicity, the points −κ2 with κ > 1

2α belong to ρ(Hα,γ ), so the interval (−∞,− 1
4α

2)

is not contained in the essential spectrum.
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It remains to deal with the positive halfline. First we notice that for any R > 0 one can
find a disc BR ⊂ R

2 of radius R which does not intersect with �, otherwise we could take a
family of such discs centred at the points (3n1R, 0) and (0, 3n2R) with n1, n2 ∈ Z, and any
curve intersecting with all of them would violate the assumption (a2).

Let φ ∈ C∞
0 ([0, 2))with φ(r) � 0 and

∫
R2 φ(|x|)2 dx = 1. Given n ∈ Z0 andp, xn ∈ R

2,
we define

ψn(x;p, xn) := 1

n
φ

(
1

n
|x − xn|

)
eipx.

The functions ψn are normalized and easily seen to provide for an appropriate sequence
{xn} ⊂ R

2 with |xn| → ∞ a Weyl sequence of the free Hamiltonian H0 corresponding
to the point |p|2 of its essential spectrum. Now choosing the sequence {xn} in such a
way that the discs B2n(xn) are mutually disjoint and do not intersect with �, we have
Hα,γψn(·;p, xn) = H0ψn(·;p, xn). In this way, we have constructed a Weyl sequence to
Hα,γ for any point of [0,∞) , thus concluding the proof. �

Now we can state our main result:

Theorem 5.2. Adopt the assumptions of the previous proposition. If the inequality (3.1) is
sharp for some s, s ′ ∈ R, then Hα,γ has at least one isolated eigenvalue below − 1

4α
2.

Proof. By proposition 2.1 we look for solutions of the equation Rκ
α,γ ψ = ψ , where

Rκ
α,γ := αRiκ

m,m is an integral operator on L2(R) with the kernel

Rκ
α,γ (s, s

′) = α

2π
K0(κ|γ (s) − γ (s ′)|)

here K0 is the Macdonald function; recall that K0(z) = π i
2 H

(1)
0 (iz). The idea is to compare

this operator with Rκ
α,γ0

having the kernel in which |γ (s) − γ (s ′)| is replaced by |s − s ′|.
The Fourier transformation takes K0(κx) to (π/2)1/2(p2 + κ2)−1/2. The well known

relation f (−i∇)ψ = (2π)−1/2(F−1f ) ∗ψ then shows that Rκ
α,γ0

is unitarily equivalent to the
multiplication operator by 1

2α(p
2+κ2)−1/2 onL2(R). Consequently, it is absolutely continuous

and its spectrum is [0, α/2κ], in correspondence with (5.1).
We can obtain the spectrum of Hα,γ0 directly, of course, as pointed out above. Now we we

want to know how the spectrum of Rκ
α,γ0

changes under the perturbation Dκ := Rκ
α,γ − Rκ

α,γ0
.

Notice that

Dκ(s, s
′) := α

2π
(K0(κ|γ (s) − γ (s ′)|) − K0(κ|s − s ′|)) � 0 (5.2)

holds for the kernel of Dκ in view of (3.1) and the monotonicity of K0. �

Lemma 5.3. sup σ(Rκ
α,γ ) >

α
2κ if � is not straight.

Proof. It is sufficient to find a real-valued ψ ∈ S(R) such that

(ψ,Rκ
α,γ ψ) − α

2κ
‖ψ2‖ > 0

which is equivalent to

2κ

α

∫
R2

Dκ(s, s
′)ψ(s)ψ(s ′) ds ds ′ +

κ

π

∫
R2
K0(κ|s − s ′|)ψ(s)ψ(s ′) ds ds ′−

∫
R

ψ(s)2 ds > 0.

Using the above observation together with the Parseval relation we can rewrite the last two
terms on the rhs as∫

R

κ√
p2 + κ2

|ψ̂(p)|2 dp −
∫

R

|ψ̂(p)|2 dp.
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Choosing

ψ(s) = 4

√
2λ2

π
e−λ2s2

we find by a direct computation that two terms equal

− 1√
2π

∫
R

(
1 − κ√

u2λ2 + κ2

)
e−u2/2 du = − 1√

2π

λ2

2κ2

∫
R

u2e−u2/2 du + O(λ3).

On the other hand, the inequality in (5.2) is sharp in an open subset of R
2 if � is not straight,

so the first term is√
2

π
λ

∫
R2

2κ

α
Dκ(s, s

′)e−λ2(s2+s ′2) ds ds ′ � cλ

for some c > 0 as λ → 0+. Hence the above ψ is the sought trial function for λ small
enough. �

Next we shall show that perturbation (5.2) is compact under the assumption (a2), and thus
it can change only the discrete spectrum of Rκ

α,γ .

Lemma 5.4. Dκ is Hilbert–Schmidt (HS) if µ > 1
2 .

Proof. For the sake of brevity, we denote

9 ≡ 9(s, s ′) := κ|γ (s) − γ (s ′)| σ ≡ σ(s, s ′) := κ|s − s ′|.
To estimate K0(9) − K0(σ ) we use the convexity of K0 together with the relation K ′

0(z) =
−K1(z),

K1(σ )(σ − 9) � K0(9) − K0(σ ) � 9K1(9)
σ − 9

9
. (5.3)

Hence the kernel of Dκ is bounded, because 9 �→ 9K1(9) is bounded in (0,∞) and the
inequality cσ � 9 � σ yields

0 � σ − 9

9
� 1 − c

c
. (5.4)

Moreover, there is c1 > 0 such that

9K1(9) � c1e−9/2 � c1 e−cσ/2 (5.5)

and by (a2) we have
σ − 9

9
� σ − 9

cσ
� d

c
[1 + |s + s ′|2µ]−1/2 (5.6)

in the sector Sω. Putting together the inequalities (5.3)–(5.6) we can estimate the HS norm of
the operator in question:(

2κ

α

)2 ∫
R2

Dκ(s, s
′)2 ds ds ′ �

(
1 − c

c

)2

c2
1

∫
R2\Sω

e−cκ|s−s ′| ds ds ′

+

(
c1d

c

)2 ∫
Sω

e−cκ|s−s ′|

1 + |s + s ′|2µ ds ds ′

�
(

2c1
1 − c

c

)2 1 + ω

1 − ω

∫ ∞

0
u e−√

2cκu du +

(
c1d

c

)2 ∫
R2

e−cκ|s−s ′|

1 + |s + s ′|2µ ds ds ′

(5.7)

which is finite for µ > 1
2 . �

Finally, we need the following continuity result.



1446 P Exner and T Ichinose

Lemma 5.5. With the above stated assumptions, the function κ �→ Rκ
α,γ is operator-norm

continuous and Rκ
α,γ → 0 as κ → ∞.

Proof. Using the above established equivalence between Rκ
α,γ0

and the multiplication by
1
2α[p2 + κ2]−1/2 we easily check the claim for the ‘free’ operator, so it is sufficient to show
that the perturbation Dκ has the same properties. The inequality

|(Dκ − Dκ ′)(s, s ′)|2 � 2[Dκ(s, s
′)2 + Dκ ′(s, s ′)2] � 4Dκ0(s, s

′)2

valid for any κ0 � min(κ, κ ′) allows us to use the dominated convergence by which

‖Dκ − Dκ ′ ‖HS → 0 as κ ′ → κ.

Finally, the estimate (5.7) shows, at the same time, that

‖Dκ‖HS → 0 as κ → ∞
which concludes the proof. �
Proof of theorem 5.2 (continued). By lemma 5.3 sup σ(Rκ

α,γ ) >
α
2κ holds whenever � is not

straight. On the other hand, the essential spectrum of Rκ
α,γ0

is by lemma 5.4 preserved under
the geometric perturbation, so Rκ

α,γ has in ( α
2κ ,∞) just isolated eigenvalues; in combination

with the previous result we infer that at least one such eigenvalue λα,γ (κ) of Rκ
α,γ exists for

any κ > 0. Finally, by lemma 5.5 the function λα,γ (·) is continuous and limκ→∞ λα,γ (κ) = 0.
Hence there is a point κ0 > 1

2α such that λα,γ (κ0) = 1, and therefore, recalling that
Rκ

α,γ = αRiκ
m,m, we infer by proposition 2.1 that −κ2

0 is an eigenvalue of the operator Hα,γ .�
Remark 5.6. One naturally asks how strong is the asymptotic restriction imposed by (a2)?
To answer this question, suppose that γ is C2 smooth. The � can be described—uniquely up
to Euclidean transformations of the plane—by its signed curvature k(s). Using the standard
expression of γ in terms of k we can estimate

|γ (s) − γ (s ′)| =
[( ∫ s

s ′
cos

( ∫ s1

s ′
k(s2) ds2

)
ds1

)2

+

( ∫ s

s ′
sin

( ∫ s1

s ′
k(s2) ds2

)
ds1

)2]1/2

�
∫ s

s ′
cos

( ∫ s1

s ′
k(s2) ds2

)
ds1 �

∫ s

s ′

[
1 − 1

2

( ∫ s1

s ′
k(s2) ds2

)2]
ds1

where we have assumed s > s ′ without loss of generality; hence

1 − |γ (s) − γ (s ′)|
|s − s ′| � 1

2|s − s ′|
∫ s

s ′

( ∫ s1

s ′
k(s2) ds2

)2

ds1.

Suppose that |k(s)| � c2|s|−β for some β > 0, then the rhs of the last inequality can be
estimated by

1

2|s − s ′|
c2

2

|s|2β
∫ s

s ′
(s1 − s ′)2ds1 � c2

2

|s ′|2β
|s − s ′|2

6
� c2

2s
2

6|s ′|2β � c2
2

6ω2
|s ′|2−2β.

Consequently, (a2) with µ > 1
2 holds for β > 5

4 . This is a slightly stronger restriction than for
curved Dirichlet strips [DE] where β > 1 is sufficient.
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Appendix

To prove theorem 4.1 we have to show that (4.4) approximates the resolvent of the formal
operator (3.3) which we have identified with H−αm. We will write the resolvents in question
in a way similar to that used for the analogous purpose in [AGHH, section I.3]. The first term
on the rhs of (4.4) is ε-independent and subtracts in the difference. The action of the second
one on a vector ψ ∈ L2(R2) can be written as

−
∫ ∫ ∫

R2
Gk(x − x ′)V 1/2

ε (x ′)[I + |Vε |1/2Rk
0V

1/2
ε ]−1(x ′, x ′′)|Vε |1/2(x ′′)

×Gk(x
′′ − x ′′′) ψ(x ′′′) dx ′ dx ′′ dx ′′′

=
∫ ∫

.

∫
R2
Gk(x − x(s ′, u′))

1

ε
W 1/2

(
u′

ε

)

×ε[I + |Vε |1/2Rk
0V

1/2
ε ]−1(s ′, u′; s ′′, u′′)

1

ε

∣∣∣∣W
(
u′′

ε

)∣∣∣∣
1/2

×Gk(x
′′′ − x(s ′′, u′′)) (1 + u′k(s ′))(1 + u′′k(s ′′))ψ(x ′′′) ds ′ du′ ds ′′ du′′ dx ′′′

(A.1)

where x(s, u) is given by (4.1) and (1 + uk(s)) is the Jacobian of the transformation between
the Cartesian and curvilinear coordinates. Changing the integration variables to t ′ := u′/ε and
t ′′ := u′′/ε we can rewrite the last expression as∫ ∫

.

∫
R2
Gk(x − γ (s ′) − n(s ′)εt ′)W 1/2(t ′)

×ε[I + |Vε |1/2Rk
0V

1/2
ε ]−1(s ′, εt ′; s ′′, εt ′′)|W(t ′′)|1/2

×Gk(x
′′′ − γ (s ′′) − n(s ′′)εt ′′)(1 + εt ′k(s ′))(1 + εt ′′k(s ′′))

×ψ(x ′′′) ds ′ du′ ds ′′ du′′ dx ′′′.

If ‖|Vε |1/2Rk
0V

1/2
ε ‖ < 1, the inverse can be written as a geometric series with the integral-

operator kernel

ε[I + |Vε |1/2Rk
0V

1/2
ε ]−1(s ′, εt ′; s ′′, εt ′′)

= δ(s ′ − s ′′) δ(t ′ − t ′′) − |W(s ′, t ′)|1/2Gk(s
′, εt ′; s ′′, εt ′′)W(s ′′, t ′′)1/2 + · · · .

Consequently, the operator given by (A.1) can be written as the product Bε(I − Cε)
−1B̃ε of

operators mapping L2(R2) → L2(.0
1) → L2(.0

1) → L2(R2), with the following kernels:

Bε(x; s ′, t ′) := Gk(x − x(s ′, εt ′))(1 + εt ′k(s ′))W(t ′)1/2

B̃ε(s, t; x ′) := |W(t)|1/2(1 + εtk(s))Gk(x
′ − x(s, εt))

Cε(s, t; s ′, t ′) := |W(t)|1/2Gk(x(s, εt) − x(s ′, εt ′))W(t ′)1/2.

We have ‖Cε‖ � ‖W‖∞‖P1R
k
0P1‖ � ‖W‖∞|k|−2 for k = iκ with κ > 0, where P1 is

the projection onto L2(.0
1) ⊂ L2(R2), hence ‖Cε‖ � const < 1 holds for κ large enough

uniformly w.r.t. ε, and the operator in question equals

Bε(I − Cε)
−1B̃ε =

∞∑
j=0

BεC
j
ε B̃ε. (A.2)

Let us now turn to the resolvent ofHα,γ . Since the operator I−αRk
m,m is by proposition 2.1

boundedly invertible for k = iκ with κ large enough, we can again write its second terms as a
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geometric series. Furthermore, α = (W 1/2, |W |1/2) by assumption, so we have

αRk
dx,m

∞∑
j=0

(αRk
m,m)

jRk
m,dx = Rk

dx,m(W
1/2, |W |1/2)Rk

m,dx

+Rk
dx,m(W

1/2, |W |1/2)Rk
m,m(W

1/2, |W |1/2)Rk
m,dx + · · ·

=
∞∑
j=0

BCj B̃ (A.3)

where B,C, B̃ are operators between the same spaces as their indexed counterparts, given
above by their integral kernels:

B(x; s ′, t ′) := Gk(x − γ (s ′))W(t ′)1/2

B̃(s, t; x ′) := |W(t)|1/2Gk(x
′ − γ (s))

C(s, t; s ′, t ′) := |W(t)|1/2Gk(γ (s) − γ (s ′))W(t ′)1/2.

Let us stress that while these operators depend on W , the expression (A.3) contains just the
integral of the approximating potential, which is why the limit does not depend on a particular
shape of W . The operator norm of the difference between (A.2) and (A.3) can be estimated
by means of the telescopic trick,

‖Bε(I − Cε)
−1B̃ε − B(I − C)−1B̃‖ �

∞∑
n=0

{
‖Bε−B‖‖Cε‖n‖B̃ε‖

+‖B‖
n−1∑
*=0

‖C‖*‖Cε−C‖‖Cε‖n−*−1‖B̃ε‖ + ‖B‖‖C‖n‖B̃ε−B̃‖
}

where the second term on the rhs is conventionally put to zero if n = 0. As above, we have
‖Rk

0‖ � |k|−2 for −ik = κ > 0, with ‖W 1/2‖ � ‖W‖1/2
∞ and |1+εtk(s)| � 1 + ε‖k‖∞ <

1 + ‖k‖∞, hence for large enough negative k2 there is a positive c3 < 1 such that

max{‖B‖, ‖Bε‖, ‖C‖, ‖Cε‖, ‖B̃‖, ‖B̃ε‖} � c3

holds for any ε ∈ (0, 1). Consequently, the norm in question is estimated by

{‖Bε−B‖ + ‖B̃ε−B̃‖}
∑
n

cn+1
3 + ‖Cε−C‖

∑
n

n cn+1
3

so it is sufficient to investigate the three norms involved here. Consider the first one which we
can estimate as follows:

‖Bε−B‖ � ‖W‖1/2
∞ {(1+‖k‖∞)‖Rk

.,ε−Rk
.,0‖ + ε‖k‖∞‖Rk

.,0‖}
whereRk

.,ε, R
k
.,0 are the resolvent factors in this expression, i.e., integral operatorsL2(.0

1) →
L2(R2) with kernels Gk(x − x(s ′, εt ′)) and Gk(x − γ (s ′)), respectively. To show that
Rk
.,ε → Rk

.,0 in the operator-norm topology, let us rewrite the kernel of the difference using
the mean value theorem,

Gk(x − x(s ′, εt ′)) − Gk(x − γ (s ′))

= 1

2π
[K0(κ|x − x(s ′, εt ′)|) − K0(κ|x − γ (s ′)|)]

= − εt ′

2π

∫ 1

0
K1(κ|x − γ (s ′) − n(s ′)εt ′ϑ |)κ

×
(

d

dϑ
dist(x, γ (s ′) + n(s ′)εt ′ϑ)

)
dϑ.
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Since the last factor does not exceed one in modulus, we have

|(Rk
.,ε − Rk

.,0)(x, x(s
′, εt ′)| � εκ|t ′|

2π

∫ 1

0
K1(κ|x − γ (s ′) − n(s ′)εt ′ϑ |) dϑ. (A.4)

This makes it possible to estimate the quantity

h∞ := sup
x∈R2

∫
R

ds ′
∫ 1

−1
dt ′ |(Rk

.,ε − Rk
.,0)(x, x

′(s ′, εt ′))|

� εκ

2π
sup
x∈R2

∫
.0

1

K1(κ|x − x(σ ′)|) dσ ′

� εκ

2π
sup
x∈R2

∫
R2
K1(κ|x − x ′)|) dx ′ = εκ

2π
‖K1(κ| · |)‖L1(R2)

where the rhs is finite, because the function K1(κ| · |) decays exponentially at large distances
and has the integrable singularity | · |−1 at the origin. In the same way we find

h1 := sup
x ′∈.1

∫
R2

|(Rk
.,ε − Rk

.,0)(x, x
′)| dx � εκ

2π
‖K1(κ| · |)‖L1(R2).

The norm under consideration can be the estimated by the corresponding Schur–Holmgren
bound—see, e.g., [Ka, example III.3.2]—as

‖Rk
.,ε − Rk

.,0‖ � (h1h∞)1/2 � εκ

2π
‖K1(κ| · |)‖L1(R2)

so it tends to zero as ε → 0. Analogous estimates are valid for ‖B̃ε − B̃‖ and ‖Cε−C‖, which
concludes the proof.

Remark. With our goal in mind we examined the situation when the approximating potential
depends on the transverse variable only. If we replace it by W ∈ L∞(.0

1), the analogous
argument shows that corresponding family (4.3) converges in the norm-resolvent sense to the
operator −( + α(s)δ(x − γ (s)) with α(s) := ∫ 1

−1 W(s, u) du, which is properly defined by a

quadratic form similar to (2.3)—see [BEKŠ].
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